题目内容
【题目】如图,已知矩形ABCD,点E在边AD上,连接BE将△ABE沿BE翻折,得到△MBE,且点M是CD中点,取BM中点N,点P为线段BE上一动点,连接PN,PM,若AD长为2,则PM+PN的最小值为_____.
【答案】2
【解析】
作点N关于BE的对称点N',连接PN',由轴对称的性质可得PN+PM=PN'+PM,依据当N',P,M三点共线时,PM+PN的最小值为N'M的长,即可得到PM+PN的最小值为2.
如图,作点N关于BE的对称点N',连接PN',
由折叠可得,BE平分∠ABM,AB=MB,
∴点N'在AB上,
又∵N是BM的中点,
∴N'是AB的中点,
由轴对称的性质可得PN=PN',
∴PN+PM=PN'+PM,
∴当N',P,M三点共线时,PM+PN的最小值为N'M的长,
又∵四边形ABCD是矩形,M是CD的中点,
∴四边形ADMN'是矩形,
∴MN'=AD=2,
∴PM+PN的最小值为2,
故答案为:2.
练习册系列答案
相关题目