题目内容
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数y=(x<0)的图象相交于点A(﹣4,m).
(1)求反比例函数y=的解析式;
(2)若点P在x轴上,AP=5,直接写出点P的坐标.
【答案】(1)y=﹣;(2)P点的坐标是(﹣7,0)或(﹣1,0).
【解析】
(1)先求出A的坐标,再代入反比例函数解析式求出即可;
(2)根据勾股定理求出即可.
(1)∵A(﹣4,m)在一次函数y=﹣x上,
∴m=4,
即A(﹣4,4),
∵A在反比例函数y=(x<0)的图象上,
∴k=﹣16,
∴反比例函数y=的解析式是y=﹣;
(2)∵Rt△ABP中,∠ABP=90°,AB=4,AP=5,
∴BP==3,
-4-3=-7,-4+3=-1,
∴P点的坐标是(﹣7,0)或(﹣1,0).
练习册系列答案
相关题目
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.