题目内容

【题目】甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是千米/时,t=小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.

【答案】
(1)60;3
(2)解:①当0≤x≤3时,设y=k1x,

把(3,360)代入,可得

3k1=360,

解得k1=120,

∴y=120x(0≤x≤3).

②当3<x≤4时,y=360.

③4<x≤7时,设y=k2x+b,

把(4,360)和(7,0)代入,可得

解得

∴y=﹣120x+840(4<x≤7).


(3)解:①(480﹣60﹣120)÷(120+60)+1

=300÷180+1

=

= (小时)

②当甲车停留在C地时,

(480﹣360+120)÷60

=240÷6

=4(小时)

③两车都朝A地行驶时,

设乙车出发x小时后两车相距120千米,

则60x﹣[120(x﹣1)﹣360]=120,

所以480﹣60x=120,

所以60x=360,

解得x=6.

综上,可得

乙车出发 后两车相距120千米.

故答案为:60、3.


【解析】解:(1)根据图示,可得 乙车的速度是60千米/时,
甲车的速度是:
(360×2)÷(480÷60﹣1﹣1)
=720÷6
=120(千米/小时)
∴t=360÷120=3(小时).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网