题目内容

【题目】如图,甲、乙两数学兴趣小组测量山CD 的高度. 甲小组在地面A处测量,乙小组在上坡B处测量,AB=200 m. 甲小组测得山顶D的仰角为45°,山坡B处的仰角为30°;乙小组测得山顶D 的仰角为58°. 求山CD的高度(结果保留一位小数).参考数据:,供选用.

【答案】山高约为295.2 m.

【解析】

RtAFB中,根据AB=200米,∠BAF=30°,求出BF、AF的长度,然后证明四边形BFCE是矩形,设BE=x米,在RtBDE中,用x表示出DE的长度,然后根据AC=DC,代入求出x的值,继而可求得山高.

BBFACF,

RtAFB中,

AB=200米,∠BAF=30°,

BF=AB=×200=100(米),

AF=ABcos30°=100(米),

BFAC,BEDC,

∴四边形BFCE是矩形,

EC=BF=100米,

BE=x米,则FC=x米,

RtDBE中,

∵∠DBE=58°,

DE=tan58°BE=1.6x(米),

∵∠DAC=45°,C=90°,

∴∠ADC=45°,

AC=DC,

AC=AF+FC=(100+x)米,

DC=DE+EC=(1.6x+100)米,

解得:x=122,

DC=DE+EC=1.6×122+100=295.2(米);

答:山的高度BC约为295.2米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网