题目内容
【题目】如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3、…、△AnAn+1Bn均为等边三角形,点A1、A2、A3、…、An+1在x轴的正半轴上依次排列,点B1、B2、B3、…、Bn在直线OD上依次排列,那么B2019的坐标为_____.
【答案】(3×22017,×22017)
【解析】
根据等边三角形的性质和∠B1OA2=30°,得∠B1OA2=∠A1B1O=30°,得到OA2=2OA1=2,同理求得OAn=2n-1,根据含30°角的直角三角形的性质可求得△AnBnAn+1的边长,得到点B2019的坐标.
解:∵△A1B1A2为等边三角形,
∴∠B1A1A2=60°,
∵∠B1OA2=30°,
∴∠B1OA2=∠A1B1O=30°,
∴OA2=2OA1=2,
同理可得,OAn=2n﹣1,
∵∠BnOAn+1=30°,∠BnAnAn+1=60°,
∴∠BnOAn+1=∠OBnAn=30°,
∴BnAn=OAn=2n﹣1,
即△AnBnAn+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,
∴点Bn的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,
∴点Bn的坐标为(3×2n﹣2,×2n﹣2),
∴点B2019的坐标为(3×22017,×22017),.
故答案为(3×22017,×22017)
【题目】截至2019年5月,山西省政府大力实施的建设“山西农谷”战略成果初现,“山西农谷”通过组建山西农谷生物科技研究院,逐步建成大学生“互联网+农业”创新创业园.某校科技小组到该创业园的全环境智能番茄特色小镇进行综合实践活动,随机调查了60株“农谷一号“番茄的挂果数量(单位:个),并绘制了如下不完靠的统计图表:
“农谷一号”番茄挂果数量统计表
挂果数量x(个) | 频数(株) | 频率 |
25≤<35 | 6 | |
35≤x<45 | 0.2 | |
45≤x<55 | 15 | a |
55≤x<65 | ||
65≤x<75 | 9 |
请结合图表中的信息解答下列问题:
(l)统计表中,a= ,若绘制“农谷一号”番茄挂果数量扇形统计图,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为 ;
(2)将频数分布直方图补充完整;
(3)若所种植的“农谷一号”番茄有1000株,请估计挂果数量在“55≤x<65”范围的番茄株数.