题目内容
【题目】如图,在矩形ABCD中,AB=10,AD=6,点M为AB上的一动点,将矩形ABCD沿某一直线对折,使点C与点M重合,该直线与AB(或BC)、CD(或DA)分别交于点P、Q
(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)
(2)如果PQ与AB、CD都相交,试判断△MPQ的形状并证明你的结论;
(3)设AM=x,d为点M到直线PQ的距离,,①求y关于x的函数解析式,并指出x的取值范围;
②当直线PQ恰好通过点D时,求点M到直线PQ的距离.
【答案】(1)作图见解析;(2)△MPQ是等腰三角形;(3).
【解析】
试题分析:(1)作线段CM的垂直平分线即可;
(2)由矩形的性质得出AB∥CD,CD=AB=10,得出∠QCO=∠PMO,由折叠的性质得出PQ是CM的垂直平分线,由线段垂直平分线的性质得出CQ=MQ,由ASA证明△OCQ≌△OMP,得出CQ=MP,得出MP=MQ即可;
(3)①作MN⊥CD于N,如图2所示:则MN=AD=6,DN=AM=x,CN=10﹣x,在Rt△MCN中,由勾股定理得出,即可得出结果;
②当直线PQ恰好通过点D时,Q与D重合,DM=DC=10,由勾股定理求出AM,得出BM,再由勾股定理求出CM,即可得出结果.
试题解析:(1)如图1所示:
(2)△MPQ是等腰三角形;理由如下:
∵四边形ABCD是矩形,∴AB∥CD,CD=AB=10,∴∠QCO=∠PMO,由折叠的性质得:PQ是CM的垂直平分线,∴CQ=MQ,OC=OM,在△OCQ和△OMP中,∵∠QCO=∠PMO,OC=OM,∠COQ=∠MOP,∴△OCQ≌△OMP(ASA),∴CQ=MP,∴MP=MQ,即△MPQ是等腰三角形;
(3)①作MN⊥CD于N,如图2所示:
则MN=AD=6,DN=AM=x,CN=10﹣x,在Rt△MCN中,由勾股定理得:,即,整理得:,即(0≤x≤10);
②当直线PQ恰好通过点D时,如图3所示:
则Q与D重合,DM=DC=10,在Rt△ADM中,AM==8,∴BM=10﹣8=2,∴CM===,∴d=CM=,即点M到直线PQ的距离为.
【题目】我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学筹款情况如下表:
筹款金额(元) | 5 | 10 | 15 | 20 | 25 | 30 |
人数 | 3 | 7 | 11 | 11 | 13 | 5 |
则该班同学筹款金额的众数和中位数分别是( )
A.11,20
B.25,11
C.20,25
D.25,20