题目内容
【题目】某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处由生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5, ≈1.7)
【答案】解:作CD⊥AB交AB延长线于D,
设CD=x米.
在Rt△ADC中,∠DAC=25°,
所以tan25°= =0.5,
所以AD= =2x.
Rt△BDC中,∠DBC=60°,
由tan 60°= = ,
解得:x≈3.
即生命迹象所在位置C的深度约为3米.
【解析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目