题目内容
星期一上午班级共有4节课,分别为数学、语文、外语和历史,如果随机排课,那么第一节上数学课,第四节上语文课的概率为( )
A. B. C. D.
一类产品进价6元,标价12.5元,打8折出售,每天可卖100件.现在市场上每降1元可多卖40件.
①若每天的利润达到420元,则必须降多少元?
②降价多少元时,利润达到最高,并求此时的利润.
已知如图,在直角坐标系xOy中,点A,点B坐标分别为(﹣1,0),(0, ),连结AB,OD由△AOB绕O点顺时针旋转60°而得.
(1)求点C的坐标;
(2)△AOB绕点O顺时针旋转60°所扫过的面积;
(3)线段AB绕点O顺时针旋转60°所扫过的面积.
一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.
小明把80个除了颜色以外其余都相同的黄、蓝、红三种球放进一个袋内,将球搅匀后随机摸出一个球记下颜色,再把它放回袋内.经多次摸球后,得到摸出黄球、蓝球、红球的概率分别为和,则红球的个数是___.
抛物线y=(x-3)2+4的顶点坐标是( )
A. (-1,2) B. (-1,-2) C. (1,-2) D. (3,4)
若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程 .
一天,老师在黑板上布置了这样一道题目:如果2ya-b-3y2a+b+8=0是关于y的一元二次方程,你能试着求出a,b的值吗?
下面是小明和小敏两位同学的解法:
小明:根据题意得解方程组得小敏:根据题意得或解方程组得或
你认为上述两位同学的解法是否正确?为什么?若都不正确,你能给出正确的解答吗?
(阅读理解)
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{ A,B }的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{ A,B }的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B }的奇点,但点D是{B,A}的奇点.
(知识运用)
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数 所表示的点是{ M,N}的奇点;数 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?