题目内容
(1)观察下列各式:
=
=
-
,
=
=
-
,
=
=
-
,
=
=
-
,…
由此可以推测:
=
=
-
=
-
,
=
=
-
=
-
.
(2)用含字母n(n为正整数)的等式表示(1)中的一般规律:
=
-
=
-
;
(3)请用(2)中的规律计算:
+
+
.
1 |
2 |
1 |
1×2 |
1 |
1 |
1 |
2 |
1 |
6 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
12 |
1 |
3×4 |
1 |
3 |
1 |
4 |
1 |
20 |
1 |
4×5 |
1 |
4 |
1 |
5 |
由此可以推测:
1 |
56 |
1 |
7×8 |
1 |
7 |
1 |
8 |
1 |
7×8 |
1 |
7 |
1 |
8 |
1 |
72 |
1 |
8×9 |
1 |
8 |
1 |
9 |
1 |
8×9 |
1 |
8 |
1 |
9 |
(2)用含字母n(n为正整数)的等式表示(1)中的一般规律:
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
(3)请用(2)中的规律计算:
1 |
(a+1)(a+2) |
1 |
(a+2)(a+3) |
1 |
(a+3)(a+4) |
分析:(1)将56变形为7×8,根据上述的规律将
变形为
与
的差;将72变为8×9,同理得到结果;
(2)根据(1)总结得到的规律,用含n的等式表示即可;
(3)由(2)总结得到的规律将原式的各项化简,抵消合并后,通分并利用同分母分式的减法法则计算,即可得到原式的值.
1 |
56 |
1 |
7 |
1 |
8 |
(2)根据(1)总结得到的规律,用含n的等式表示即可;
(3)由(2)总结得到的规律将原式的各项化简,抵消合并后,通分并利用同分母分式的减法法则计算,即可得到原式的值.
解答:解:(1)
=
=
-
;
=
=
-
;
(2)用含字母n(n为正整数)的等式表示(1)中的一般规律为:
=
-
;
(3)由(2)中的规律化简得:
+
+
=
-
+
-
+
-
=
-
=
.
故答案为:(1)
=
-
;
=
-
;(2)
=
-
.
1 |
56 |
1 |
7×8 |
1 |
7 |
1 |
8 |
1 |
72 |
1 |
8×9 |
1 |
8 |
1 |
9 |
(2)用含字母n(n为正整数)的等式表示(1)中的一般规律为:
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
(3)由(2)中的规律化简得:
1 |
(a+1)(a+2) |
1 |
(a+2)(a+3) |
1 |
(a+3)(a+4) |
=
1 |
a+1 |
1 |
a+2 |
1 |
a+2 |
1 |
a+3 |
1 |
a+3 |
1 |
a+4 |
=
1 |
a+1 |
1 |
a+4 |
=
3 |
(a+1)(a+4) |
故答案为:(1)
1 |
7×8 |
1 |
7 |
1 |
8 |
1 |
8×9 |
1 |
8 |
1 |
9 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
点评:此题考查了分式的混合运算,属于规律型题,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时若分式分子分母中出现多项式,应先将多项式分解因式后再约分.根据题意找出一般性规律是解本题的关键.

练习册系列答案
相关题目