题目内容
如图,在等腰△ABC中,AB=AC,点O是底边BC的中点,OD⊥AB,OE⊥AC,垂足分别为D、E.求证:OD=OE.
证明:连接AO,
∵AB=AC,O是BC中点,∴AO平分∠BAC,即∠DAO=∠EAO,
又AO=AO,
∴△AOD≌△AOE,
∴OD=OE.
∵AB=AC,O是BC中点,∴AO平分∠BAC,即∠DAO=∠EAO,
又AO=AO,
∴△AOD≌△AOE,
∴OD=OE.
练习册系列答案
相关题目
题目内容