题目内容
【题目】如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
【答案】C
【解析】解:∵tan∠C= ,AB=6cm,
∴ = ,
∴BC=8,
由题意得:AP=t,BP=6﹣t,BQ=2t,
设△PBQ的面积为S,
则S= ×BP×BQ= ×2t×(6﹣t),
S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,
P:0≤t≤6,Q:0≤t≤4,
∴当t=3时,S有最大值为9,
即当t=3时,△PBQ的最大面积为9cm2;
故答案为:C.
根据解直角三角形中正切的定义,求出BC的值,由三角形的面积公式得到二次函数,由顶点式得到最大面积.
练习册系列答案
相关题目