题目内容
【题目】在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积.
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.
【答案】(1)甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)y与x的函数解析式为:y=36﹣2x.(3)安排甲队施工10天,乙队施工16天时,施工总费用最低.
【解析】
试题分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;
(2)根据题意得到100x+50y=1800,整理得:y=36﹣2x,即可解答.
(3)根据甲乙两队施工的总天数不超过26天,得到x≥10,设施工总费用为w元,根据题意得:w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,根据一次函数的性质,即可解答.
解:(1)设乙工程队每天能完成绿化的面积是xm2,
根据题意得:,
解得:x=50,
经检验,x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)根据题意,得:100x+50y=1800,
整理得:y=36﹣2x,
∴y与x的函数解析式为:y=36﹣2x.
(3)∵甲乙两队施工的总天数不超过26天,
∴x+y≤26,
∴x+36﹣2x≤26,
解得:x≥10,
设施工总费用为w元,根据题意得:
w=0.6x+0.25y=0.6x+0.25×(36﹣2x)=0.1x+9,
∵k=0.1>0,
∴w随x减小而减小,
∴当x=10时,w有最小值,最小值为0.1×10+9=10,
此时y=26﹣10=16.
答:安排甲队施工10天,乙队施工16天时,施工总费用最低.
![](http://thumb.zyjl.cn/images/loading.gif)