题目内容
(2012•珠海)观察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
…
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52×
②
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
…
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52×
275
275
=572
572
×25;②
63
63
×396=693×36
36
.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.
分析:(1)观察规律,左边,两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;右边,三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;
(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可.
(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行证明即可.
解答:解:(1)①∵5+2=7,
∴左边的三位数是275,右边的三位数是572,
∴52×275=572×25,
②∵左边的三位数是396,
∴左边的两位数是63,右边的两位数是36,
63×369=693×36;
故答案为:①275,572;②63,36.
(2)∵左边两位数的十位数字为a,个位数字为b,
∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,
右边的两位数是10b+a,三位数是100a+10(a+b)+b,
∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
证明:左边=(10a+b)×[100b+10(a+b)+a],
=(10a+b)(100b+10a+10b+a),
=(10a+b)(110b+11a),
=11(10a+b)(10b+a),
右边=[100a+10(a+b)+b]×(10b+a),
=(100a+10a+10b+b)(10b+a),
=(110a+11b)(10b+a),
=11(10a+b)(10b+a),
左边=右边,
所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).
∴左边的三位数是275,右边的三位数是572,
∴52×275=572×25,
②∵左边的三位数是396,
∴左边的两位数是63,右边的两位数是36,
63×369=693×36;
故答案为:①275,572;②63,36.
(2)∵左边两位数的十位数字为a,个位数字为b,
∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,
右边的两位数是10b+a,三位数是100a+10(a+b)+b,
∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
证明:左边=(10a+b)×[100b+10(a+b)+a],
=(10a+b)(100b+10a+10b+a),
=(10a+b)(110b+11a),
=11(10a+b)(10b+a),
右边=[100a+10(a+b)+b]×(10b+a),
=(100a+10a+10b+b)(10b+a),
=(110a+11b)(10b+a),
=11(10a+b)(10b+a),
左边=右边,
所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).
点评:本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.
练习册系列答案
相关题目