题目内容

如图,在等腰中,,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持.连接DE、DF、EF.在此运动变化的过程中,下列结论:①是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是【    】

A.①②③       B.①③④         C.①④⑤ D.③④⑤

 

【答案】

C

【解析】连接CF;

∵△ABC是等腰直角三角形,

∴∠FCB=∠A=45°,CF=AF=FB;

∵AD=CE,

∴△ADF≌△CEF;

∴EF=DF,∠CFE=∠AFD;

∵∠AFD+∠CFD=90°,

∴∠CFE+∠CFD=∠EFD=90°,

∴△EDF是等腰直角三角形.

因此①正确.

当D、E分别为AC、BC中点时,四边形CDFE是正方形.

因此②错误.

∵△ADF≌△CEF,

∴S△CEF=S△ADF∴S四边形CEFD=S△AFC

因此④正确.

由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;

即当DF⊥AC时,DE最小,此时DF=1/2 BC=4.

∴DE=DF=4 ;

因此③错误.

当△CEF面积最大时,由④知,此时△DEF的面积最小.

此时S△CEF=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8;

因此⑤正确.

故选C.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网