题目内容

(2013•无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于(  )
分析:由梯形ABCD中,AD∥BC,可得△AOD∽△COB,又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD与△BOC的面积比.
解答:解:∵梯形ABCD中,AD∥BC,
∴△AOD∽△COB,
∵AD=1,BC=4,
即AD:BC=1:4,
∴△AOD与△BOC的面积比等于:1:16.
故选D.
点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网