题目内容
【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,
(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.
【答案】(1)作图见试题解析;(2)B′(3,2),C′(3,5);(3)2π.
【解析】试题分析:(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C的对应点B′,C′的位置,然后顺次连接即可;
(2)根据图形即可得出点A的坐标;
(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.
解:(1)△AB′C′如图所示;
(2)点B′的坐标为(3,2),点C′的坐标为(3,5);
(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,
∵AC=4,
∴弧长为:==2π,
即点C经过的路径长为2π.
练习册系列答案
相关题目