题目内容
如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于________.
计算:(﹣)﹣2+(﹣1)0﹣=____.
(1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.
(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.
(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4. 直接写出下列两题的答案:
①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.
“五·一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.
(1)求步行同学每分钟走多少千米?
(2)如图是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图象.
完成下列填空:
①表示骑车同学的函数图象是线段__________;
②已知A点坐标(30,0),则B点的坐标为(________).
函数中,自变量x的取值范围是_____.
如果a与1互为相反数,则|a+2|等于( )
A. 2 B. -2 C. 1 D. -1
如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为( )
A. 1﹣π B. 1﹣π C. 2﹣π D. 2﹣π
已知抛物线y=ax2+bx+c(a>0)的顶点为(2,4),若点(﹣2,m),(3,n)在抛物线上,则m_____n(填“>”、“=”或“<”).