题目内容
如果a与1互为相反数,则|a+2|等于( )
A. 2 B. -2 C. 1 D. -1
如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为( )
A. 3cm B. 7cm C. 3cm或7cm D. 5cm或2cm
如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于________.
某男子排球队20名队员的身高如下表:
身高(cm)
180
186
188
192
208
人数(个)
4
6
5
3
2
则此男子排球队20名队员的身高的众数和中位数分别是(单位:cm)
A.186,186 B.186,187 C.208,188 D.188,187
在?ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求?ABCD的面积.
观察一列单项式:a,﹣2a2,4a3,﹣8a4,…,根据你发现的规律,第10个单项式为_____.
某校决定购买一些跳绳和排球,需要的跳绳数量是排球数量的3倍,购买的总费用不低于2200元,但不高于2500元.
(1)商场内跳绳的售价为20元/根,排球的售价为50元/个,按照学校所定的费用,有几种购买方案?每种方案中跳绳和排球数量各为多少?
(2)在(1)的方案中,哪一种方案的总费用最少?最少的费用是多少元?
如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )
A. B. C. D.