题目内容
【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:
①∠AOB=90°+∠C;
②AE+BF=EF;
③当∠C=90°时,E,F分别是AC,BC的中点;
④若OD=a,CE+CF=2b,则S△CEF=ab.
其中正确的是( )
A.①②B.③④C.①②④D.①③④
【答案】C
【解析】
根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;根据角平分线的性质判断④.
∵∠BAC和∠ABC的平分线相交于点O,
∴∠OBA=∠CBA,∠OAB=∠CAB,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=180°﹣∠CBA﹣∠CAB
=180°﹣(180°﹣∠C)
=90°+∠C,①正确;
∵EF∥AB,
∴∠FOB=∠ABO,又∠ABO=∠FBO,
∴∠FOB=∠FBO,
∴FO=FB,
同理EO=EA,
∴AE+BF=EF,②正确;
当∠C=90°时,AE+BF=EF<CF+CE,
∴E,F不是AC,BC的中点,③错误;
作OH⊥AC于H,
∵∠BAC和∠ABC的平分线相交于点O,
∴点O在∠C的平分线上,
∴OD=OH,
∴S△CEF=×CF×OD×CE×OH=ab,④正确.
故选:C.
练习册系列答案
相关题目