题目内容
一个运动员打高尔夫球,若球的飞行高度与水平距离之间的函数表达式为,则高尔夫球在飞行过程中的最大高度为( )
A. B. C. D.
如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
在RtΔABC中,∠, 若AB=5,BC=3,,则=______,______,_____ ,
如图,已知桥拱形状为抛物线,其函数关系式为y=﹣x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是_____.
一块边缘呈抛物线型的铁片如图放置,测得AB=20cm,抛物线的顶点到AB边的距离为25cm。现要沿AB边向上依次截取宽度均为4cm的矩形铁皮(如图所示),若截得的铁皮中有一块是正方形,则这块正方形铁皮是( )
A.第七块 B.第六块 C.第五块 D.第四块
如图是几组三角形的组合图形,图①中,;图②中,;图③中,;图④中,.
小说:图①、②是位似变换,其位似中心分别是和.
小说:图③、④是位似变换,其位似中心是点.
请你观察一番,评判小,小谁对谁错.
已知,在中,,,点在边上,点在边上,,________时,则与相似.
如图,已知反比例函数的图象经过直角三角形斜边的中点,且与直角边相交于点.若点的坐标为.求:
点的坐标;
反比例函数的解析式;
的面积.
如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有( )
A. ①②④ B. ②③④ C. ③④ D. ①②③④