题目内容

【题目】今年“五一”假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山巅C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°,点C到水平线AM的距离为600米.

(1)求B点到水平线AM的距离.

(2)求斜坡AB的坡度.

【答案】(1) 400(米);(2) 12.4

【解析】试题分析:(1)过CCF⊥AMF为垂足,过B点作BE⊥AMBD⊥CFED为垂足,构造直角三角形ABE和直角三角形CBD,然后根据直角三角形的性质求出CD的高度,用点B的海拔高度减去CD的长度就是点B的海拔高度;(2)要求斜坡AB的坡度,首先要做的就是求出AB的长度,那么就需要构建直角三角形,运用勾股定理来求解;以及根据坡度的定义求出坡度.

试题解析:解:(1)如图,过CCF⊥AMF为垂足,过B点作BE⊥AMBD⊥CFED为垂足.

C点测得B点的俯角为30°

∴∠CBD=30°,又BC=400米,

∴CD=400×sin30°=400×=200(米).

∴B点的铅直高度为600﹣200=400(米).

2∵BE=400米,

∴AB=1040米,AE===960米,

∴AB的坡度iAB===

故斜坡AB的坡度为12.4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网