题目内容
【题目】某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+,则下列结论:
(1)柱子OA的高度为m;
(2)喷出的水流距柱子1m处达到最大高度;
(3)喷出的水流距水平面的最大高度是2.5m;
(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x轴,y轴的交点,解答题目的问题.
解:当x=0时,y=,故柱子OA的高度为m;(1)正确;
∵y=﹣x2+2x+=﹣(x﹣1)2+2.25,
∴顶点是(1,2.25),
故喷出的水流距柱子1m处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;
解方程﹣x2+2x+=0,
得x1=﹣,x2=,
故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确.
故选:C.
练习册系列答案
相关题目