题目内容

已知:点D是Rt△ABC的BC边的一个动点(如图),过点D作DE⊥AB,垂足为E,点F在AB边上(点F与点B不重合),且满足FE=BE,联结CF、DF.
(1)当DF平分∠CFB时,求证:
(2)若AB=10,tanB=.当DF⊥CF时,求BD的长.

【答案】分析:(1)利用由两对角相等的三角形相似即可证明△CFD∽△CBF,由相似三角形的性质:对应边的比值相等即可证明
(2)利用已知条件可求出AC=6,BC=8,因为tanB=.可设DE=3x,则BE=4x,则BD=5x,CD=BC-BD=8-5x,再证明三角形ACF是等腰三角形,进而得到CF=6,根据勾股定理建立方程求出x的值即可.
解答:(1)证明:∵DF平分∠CFB,
∴∠CFD=∠EFD,
∵DE⊥AB,FE=BE,
∴DF=BD,
∴∠EFD=∠DBF,
∵∠FCD=∠BCF,
∴△CFD∽△CBF,

∵DF=BD,


(2)解:∵AB=10,tanB=
∴AC=6,BC=8,
∵tanB=.设DE=3x,则BE=4x,则BD=5x,CD=BC-BD=8-5x,
∵DE⊥AB,FE=BE,
∴DF=BD,
∴∠DFB=∠B,
∵DF⊥CF,
∴∠AFC+∠BFD=90°,
∵∠A+∠B=90°,
∴∠A=∠AFC,
∴AC=FC=6,
∴62+(5x)2=(8-5x)2
解得:x=
故当DF⊥CF时,BD的长是
点评:本题考查了直角三角形的性质、相似三角形的判定和性质、勾股定理的运用、等腰三角形的判定和性质以及锐角三角函数的应用,题目的综合性很好,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网