题目内容
【题目】已知P(5,5),点B、A分别在x的正半轴和y的正半轴上,∠APB=90°,则OA+OB=
【答案】10
【解析】解:过P作PM⊥y轴于M,PN⊥x轴于N,如图所示:
∵P(5,5),
∴PN=PM=5,
∵x轴⊥y轴,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°﹣90°﹣90°﹣90°=90°,
则四边形MONP是正方形,
∴OM=ON=PN=PM=5,
∵∠APB=90°,
∴∠APB=∠MON,
∴∠MPA=90°﹣∠APN,∠BPN=90°﹣∠APN,
∴∠APM=∠BPN,
在△APM和△BPN中, ,
∴△APM≌△BPN(ASA),
∴AM=BN,
∴OA+OB=OA+0N+BN=OA+ON+AM=ON+OM=5+5=10
所以答案是:10.
练习册系列答案
相关题目