题目内容

如图,已知BD、CE是△ABC的高,下面给出四个结论:①∠1=∠2=90°-∠A;②∠3=∠A=90°-∠1;③∠BOC=∠A+∠1+∠2;④∠1+∠2+∠3+∠A=180°,其中正确的个数是(  )
分析:根据三角形内角和定理为180°以及三角形外角性质,分别求出即可.
解答:解:∵BD,CE是△ABC的高,
∴∠AEC=90°,∠BDA=90°,
∴∠1+∠A=90°,∠2+∠A=90°,
∴∠1=∠2=90°-∠A,
故①正确;
∵∠ODC=90°,
∴∠3+∠2=90°,
∴∠3=90°-∠2,
∵∠2=90°-∠A,
∴∠A=90°-∠2,
∴∠3=∠A=90°-∠1,
故②正确;
∵∠BDC=∠A+∠1,∠BOC=∠2+∠BDC,
∴∠BOC=∠A+∠1+∠2,
故③正确;
④∠1+∠2+∠3+∠4=180°,
∴∠2+∠3=90°,∠1+∠A=90°,
∴∠1+∠2+∠3+∠4=180°,故此选项正确,
故正确的有4个,
故选:C.
点评:此题主要考查了三角形内角和定理以及三角形外角的性质,灵活利用此性质是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网