题目内容
【题目】如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:
①=; ②=; ③=; ④=.其中正确的个数有( )
A. 1个 B. C. 3个 D. 4个
【答案】C
【解析】
根据三角形的中位线定理推出FE∥BC,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可.
∵AF=FB,AE=EC,∴FE∥BC,FE:BC=1:2,∴,故①③正确.
∵FE∥BC,FE:BC=1:2,∴FG:GC=1:2,△FEG∽△CBG.设S△FGE=S,则S△EGC=2S,S△BGC=4s,∴,故②错误.
∵S△FGE=S,S△EGC=2S,∴S△EFC=3S.
∵AE=EC,∴S△AEF=3S,∴ =,故④正确.
故选C.
练习册系列答案
相关题目
【题目】阅读下列材料:有这样一个问题:关于的一元二次方程有两个不相等的且非零的实数根探究,,满足的条件.
小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程对应的二次函数为;
②借助二次函数图象,可以得到相应的一元二次中,,满足的条件,列表如下:
方程根的几何意义:
方程两根的情况 | 对应的二次函数的大致图象 | ,,满足的条件 |
方程有两个不相等的负实根 | ||
____________ | ||
方程有两个不相等的正实根 | ____________ | ____________ |
(1)参考小明的做法,把上述表格补充完整;
(2)若一元二次方程有一个负实根,一个正实根,且负实根大于-1,求实数的取值范围.