ÌâÄ¿ÄÚÈÝ
ÒÑÖªÒ»Å×ÎïÏß¾¹ýO£¨0£¬0£©£¬B£¨1£¬1£©Á½µã£¬ÇÒ½âÎöʽµÄ¶þ´ÎÏîϵÊýΪ-£¨a£¾0£©£®
£¨¢ñ£©µ±a=1ʱ£¬Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£¬²¢ÓÃÅä·½·¨Çó³ö¸ÃÅ×ÎïÏߵĶ¥µã×ø±ê£»
£¨¢ò£©ÒÑÖªµãA£¨0£¬1£©£¬ÈôÅ×ÎïÏßÓëÉäÏßABÏཻÓÚµãM£¬ÓëxÖáÏཻÓÚµãN£¨ÒìÓÚԵ㣩£¬µ±aÔÚʲô·¶Î§ÄÚȡֵʱ£¬ON+BMµÄֵΪ³£Êý£¿µ±aÔÚʲô·¶Î§ÄÚȡֵʱ£¬ON-BMµÄֵΪ³£Êý£¿
£¨¢ó£©ÈôµãP£¨t£¬t£©ÔÚÅ×ÎïÏßÉÏ£¬Ôò³ÆµãPΪÅ×ÎïÏߵIJ»¶¯µã£®½«ÕâÌõÅ×ÎïÏß½øÐÐƽÒÆ£¬Ê¹ÆäÖ»ÓÐÒ»¸ö²»¶¯µã£¬´ËʱÅ×ÎïÏߵĶ¥µãÊÇ·ñÔÚÖ±Ïßy=x-ÉÏ£¬Çë˵Ã÷ÀíÓÉ£®
½â£ºÉè¸ÃÅ×ÎïÏߵĽâÎöʽΪ£¬
¡ßÅ×ÎïÏß¾¹ý£¨0£¬0£©¡¢£¨1£¬1£©Á½µã£¬
¡à£¬
½âµÃ£®
¡à¸ÃÅ×ÎïÏߵĽâÎöʽΪ
£¨¢ñ£©µ±a=1ʱ£¬¸ÃÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x£¬
y=-x2+2x=-£¨x2-2x+1£©+1=-£¨x-1£©2+1£®
¸ÃÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨1£¬1£©£»
£¨¢ò£©¡ßµãNÔÚxÖáÉÏ£¬¡àµãNµÄ×Ý×ø±êΪ0£®
µ±y=0ʱ£¬ÓУ¬
½âµÃx1=0£¬x2=a+1£®
¡ßµãNÒìÓÚԵ㣬¡àµãNµÄ×ø±êΪ£¨a+1£¬0£©£®
¡àON=a+1£¬
¡ßµãMÔÚÉäÏßABÉÏ£¬¡àµãMµÄ×Ý×ø±êΪ1£®
µ±y=1ʱ£¬ÓУ¬
ÕûÀíµÃ³ö£¬
½âµÃx1=1£¬x2=a£®
µãMµÄ×ø±êΪ£¨1£¬1£©»ò£¨a£¬1£©£®
µ±µãMµÄ×ø±êΪ£¨1£¬1£©Ê±£¬MÓëBÖغϣ¬
´Ëʱa=1£¬BM=0£¬ON=2£®ON+BMÓëON-BMµÄÖµ¶¼Êdz£Êý2£®
µ±µãMµÄ×ø±êΪ£¨a£¬1£©Ê±£¬
ÈôµãMÔÚµãBÓҲ࣬´Ëʱa£¾1£¬BM=a-1£®
¡àON+BM=£¨a+1£©+£¨a-1£©=2a£¬ON-BM=£¨a+1£©-£¨a-1£©=2£®
ÈôµãMÔÚµãB×ó²à£¬´Ëʱ0£¼a£¼1£¬BM=1-a£®
¡àON+BM=£¨a+1£©+£¨1-a£©=2£¬ON-BM=£¨a+1£©-£¨1-a£©=2a£®
¡àµ±0£¼a¡Ü1ʱ£¬ON+BMµÄÖµÊdz£Êý2£¬
µ±a¡Ý1ʱ£¬ON-BMµÄÖµÊdz£Êý2£®
£¨¢ó£©ÉèƽÒƺóµÄÅ×ÎïÏߵĽâÎöʽΪ£¬
Óɲ»¶¯µãµÄ¶¨Ò壬µÃ·½³Ì£º£¬
¼´t2+£¨a-2h£©t+h2-ak=0£®
¡ßƽÒƺóµÄÅ×ÎïÏßÖ»ÓÐÒ»¸ö²»¶¯µã£¬¡à´Ë·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£®
¡àÅбðʽ¡÷=£¨a-2h£©2-4£¨h2-ak£©=0£¬
ÓÐa-4h+4k=0£¬¼´£®
¡à¶¥µã£¨h£¬k£©ÔÚÖ±ÏßÉÏ£®
·ÖÎö£º£¨¢ñ£©Ê×ÏÈÀûÓÃÅ×ÎïÏß¾¹ýO£¨0£¬0£©£¬B£¨1£¬1£©Á½µã£¬ÇÒ½âÎöʽµÄ¶þ´ÎÏîϵÊýΪ-Çó³öÅ×ÎïÏß½âÎöʽ£¬ÔÙÀûÓÃa=1Çó³öÅ×ÎïÏߵĶ¥µã×ø±ê¼´¿É£»
£¨¢ò£©ÀûÓõ±y=0ʱ£¬ÓУ¬Çó³öxµÄÖµ£¬½ø¶øµÃ³öµãNµÄ×ø±ê£¬ÔÙÀûÓÃÈôµãMÔÚµãBÓҲ࣬´Ëʱa£¾1£¬BM=a-1£»ÈôµãMÔÚµãB×ó²à£¬´Ëʱ0£¼a£¼1£¬BM=1-aµÃ³ö´ð°¸¼´¿É£»
£¨¢ó£©ÀûÓÃƽÒƺóµÄÅ×ÎïÏßÖ»ÓÐÒ»¸ö²»¶¯µã£¬¹Ê´Ë·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬µÃ³öÅбðʽ¡÷=£¨a-2h£©2-4£¨h2-ak£©=0£¬½ø¶øÇó³ökÓëh£¬aµÄ¹Øϵ¼´¿ÉµÃ³ö¶¥µã£¨h£¬k£©ÔÚÖ±ÏßÉÏ£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÓ¦ÓÃÒÔ¼°¸ùµÄÅбðʽµÄÐÔÖʵÈ֪ʶ£¬ÀûÓ÷ÖÀàÌÖÂÛµÄ˼ÏëµÃ³öMÓëBµÄ²»Í¬Î»ÖùØϵµÃ³ö´ð°¸ÊǽâÌâ¹Ø¼ü£®
¡ßÅ×ÎïÏß¾¹ý£¨0£¬0£©¡¢£¨1£¬1£©Á½µã£¬
¡à£¬
½âµÃ£®
¡à¸ÃÅ×ÎïÏߵĽâÎöʽΪ
£¨¢ñ£©µ±a=1ʱ£¬¸ÃÅ×ÎïÏߵĽâÎöʽΪy=-x2+2x£¬
y=-x2+2x=-£¨x2-2x+1£©+1=-£¨x-1£©2+1£®
¸ÃÅ×ÎïÏߵĶ¥µã×ø±êΪ£¨1£¬1£©£»
£¨¢ò£©¡ßµãNÔÚxÖáÉÏ£¬¡àµãNµÄ×Ý×ø±êΪ0£®
µ±y=0ʱ£¬ÓУ¬
½âµÃx1=0£¬x2=a+1£®
¡ßµãNÒìÓÚԵ㣬¡àµãNµÄ×ø±êΪ£¨a+1£¬0£©£®
¡àON=a+1£¬
¡ßµãMÔÚÉäÏßABÉÏ£¬¡àµãMµÄ×Ý×ø±êΪ1£®
µ±y=1ʱ£¬ÓУ¬
ÕûÀíµÃ³ö£¬
½âµÃx1=1£¬x2=a£®
µãMµÄ×ø±êΪ£¨1£¬1£©»ò£¨a£¬1£©£®
µ±µãMµÄ×ø±êΪ£¨1£¬1£©Ê±£¬MÓëBÖغϣ¬
´Ëʱa=1£¬BM=0£¬ON=2£®ON+BMÓëON-BMµÄÖµ¶¼Êdz£Êý2£®
µ±µãMµÄ×ø±êΪ£¨a£¬1£©Ê±£¬
ÈôµãMÔÚµãBÓҲ࣬´Ëʱa£¾1£¬BM=a-1£®
¡àON+BM=£¨a+1£©+£¨a-1£©=2a£¬ON-BM=£¨a+1£©-£¨a-1£©=2£®
ÈôµãMÔÚµãB×ó²à£¬´Ëʱ0£¼a£¼1£¬BM=1-a£®
¡àON+BM=£¨a+1£©+£¨1-a£©=2£¬ON-BM=£¨a+1£©-£¨1-a£©=2a£®
¡àµ±0£¼a¡Ü1ʱ£¬ON+BMµÄÖµÊdz£Êý2£¬
µ±a¡Ý1ʱ£¬ON-BMµÄÖµÊdz£Êý2£®
£¨¢ó£©ÉèƽÒƺóµÄÅ×ÎïÏߵĽâÎöʽΪ£¬
Óɲ»¶¯µãµÄ¶¨Ò壬µÃ·½³Ì£º£¬
¼´t2+£¨a-2h£©t+h2-ak=0£®
¡ßƽÒƺóµÄÅ×ÎïÏßÖ»ÓÐÒ»¸ö²»¶¯µã£¬¡à´Ë·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£®
¡àÅбðʽ¡÷=£¨a-2h£©2-4£¨h2-ak£©=0£¬
ÓÐa-4h+4k=0£¬¼´£®
¡à¶¥µã£¨h£¬k£©ÔÚÖ±ÏßÉÏ£®
·ÖÎö£º£¨¢ñ£©Ê×ÏÈÀûÓÃÅ×ÎïÏß¾¹ýO£¨0£¬0£©£¬B£¨1£¬1£©Á½µã£¬ÇÒ½âÎöʽµÄ¶þ´ÎÏîϵÊýΪ-Çó³öÅ×ÎïÏß½âÎöʽ£¬ÔÙÀûÓÃa=1Çó³öÅ×ÎïÏߵĶ¥µã×ø±ê¼´¿É£»
£¨¢ò£©ÀûÓõ±y=0ʱ£¬ÓУ¬Çó³öxµÄÖµ£¬½ø¶øµÃ³öµãNµÄ×ø±ê£¬ÔÙÀûÓÃÈôµãMÔÚµãBÓҲ࣬´Ëʱa£¾1£¬BM=a-1£»ÈôµãMÔÚµãB×ó²à£¬´Ëʱ0£¼a£¼1£¬BM=1-aµÃ³ö´ð°¸¼´¿É£»
£¨¢ó£©ÀûÓÃƽÒƺóµÄÅ×ÎïÏßÖ»ÓÐÒ»¸ö²»¶¯µã£¬¹Ê´Ë·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬µÃ³öÅбðʽ¡÷=£¨a-2h£©2-4£¨h2-ak£©=0£¬½ø¶øÇó³ökÓëh£¬aµÄ¹Øϵ¼´¿ÉµÃ³ö¶¥µã£¨h£¬k£©ÔÚÖ±ÏßÉÏ£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÓ¦ÓÃÒÔ¼°¸ùµÄÅбðʽµÄÐÔÖʵÈ֪ʶ£¬ÀûÓ÷ÖÀàÌÖÂÛµÄ˼ÏëµÃ³öMÓëBµÄ²»Í¬Î»ÖùØϵµÃ³ö´ð°¸ÊǽâÌâ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿