题目内容
如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)证明:△ABC∽△DBE;
(2)若∠CAB=30°,AF=
,用扇形OAC围成一个圆锥,求该圆锥底面圆的半径.
(1)证明:△ABC∽△DBE;
(2)若∠CAB=30°,AF=
3 |
(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°.
∵CD⊥AB,
∴∠DEB=90°.
∴∠ACB=∠DEB.
又∵∠A=∠D,
∴△ACB∽△DEB.
(2)∵OA=OC,
∴∠ACO=∠CAB=30°.
∴∠AOC=120°.
∵OF⊥AC,
∴∠AFO=90°.
在Rt△AFO中,cos30°=
=
,
∴AO=2.
∴
的长为
•π•2=
π.
∴圆锥的底面半径=
=
.
∴∠ACB=90°.
∵CD⊥AB,
∴∠DEB=90°.
∴∠ACB=∠DEB.
又∵∠A=∠D,
∴△ACB∽△DEB.
(2)∵OA=OC,
∴∠ACO=∠CAB=30°.
∴∠AOC=120°.
∵OF⊥AC,
∴∠AFO=90°.
在Rt△AFO中,cos30°=
AF |
OA |
| ||
AO |
∴AO=2.
∴
AC |
120 |
180 |
4 |
3 |
∴圆锥的底面半径=
| ||
2π |
2 |
3 |
练习册系列答案
相关题目