题目内容

如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.
(1)证明:△ABC△DBE;
(2)若∠CAB=30°,AF=
3
,用扇形OAC围成一个圆锥,求该圆锥底面圆的半径.
(1)证明:∵AB为⊙O的直径,
∴∠ACB=90°.
∵CD⊥AB,
∴∠DEB=90°.
∴∠ACB=∠DEB.
又∵∠A=∠D,
∴△ACB△DEB.

(2)∵OA=OC,
∴∠ACO=∠CAB=30°.
∴∠AOC=120°.
∵OF⊥AC,
∴∠AFO=90°.
在Rt△AFO中,cos30°=
AF
OA
=
3
AO

∴AO=2.
AC
的长为
120
180
•π•2=
4
3
π.
∴圆锥的底面半径=
4
3
π
=
2
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网