题目内容
【题目】如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在边BC上,且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度沿AC向终点运动;点Q以1.25cm/s的速度沿BC向终点C运动,过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为ts(0<t<4).
(1)连接DP,当t>1时,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值,总有PQ与AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形?
【答案】(1)(2)见解析 (3)当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.
【解析】(1)先根据点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动求出1秒后AP及BQ的长,进而可得出QD及的长,再由PE∥BC可知,故可得出PE=QD,由PE∥BC即可得出结论;
(2)先用t表示出PC及CQ的长,再求出即可得出结论;
(3)分∠EQP=90°,∠QED=90°两种情况,通过三角形相似,列出比例关系,求出t的值即可.
解:(1)能,
如图1,
∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,t=1秒,
∴AP=1厘米,BQ=1.25厘米,
∵AC=4cm,BC=5cm,点D在BC上,CD=3cm,
∴PC=AC﹣AP=4﹣1=3(厘米),QD=BC﹣BQ﹣CD=5﹣1.25﹣3=0.75(厘米),
∵PE∥BC,
∴△APE∽△ACD,
∴,,解得PE=0.75,
∵PE∥BC,PE=QD,
∴四边形EQDP是平行四边形;
(2)如图2,
∵点P以1厘米/秒的速度沿AC向终点C运动,点Q以1.25厘米/秒的速度沿BC向终点C运动,
∴PC=AC﹣AP=4﹣t,QC=BC﹣BQ=5﹣1.25t,
∴,,
∴,
又∵∠C=∠C,
∴△CPQ∽△CAB,
∴∠CPQ=∠CAB,
∴PQ∥AB;
(3)分两种情况讨论:
①如图3,
当∠EQD=90°时,显然有EQ=PC=4﹣t,
又∵EQ∥AC,
∴△EDQ∽△ADC
∴,
∵BC=5厘米,CD=3厘米,
∴BD=2厘米,
∴DQ=1.25t﹣2,
∴,解得t=2.5(秒);
②如图4,
当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则四边形EMCP是矩形,EM=PC=4﹣t,
在Rt△ACD中,
∵AC=4厘米,CD=3厘米,
∴AD==5,
∴CN=,
∵∠CDA=∠EDQ,∠QED=∠C=90°,
∴△EDQ∽△CDA,
∴,
∴,
解得t=3.1(秒).
综上所述,当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.
“点睛”此题是四边形纵综合题,主要考查了相似三角形的判定和性质,平行线的判定和性质,直角三角形的性质,解(1)的关键是判定出△APE∽△ACD,解(2)的关键是判断出,解(3)的关键是用分类讨论的思想解决问题.