题目内容
如图:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足为C,D.
求证:(1)OC=OD;(2)DF=CF.
求证:(1)OC=OD;(2)DF=CF.
证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴EC=DE,∠ECO=∠EDO=90°,
在Rt△COE和Rt△DOE中,
,
∴Rt△COE≌Rt△DOE(HL),
∴CO=DO;
(2)∵EO平分∠AOB,
∴∠AOE=∠BOE,
在△COF和△DOF中,
,
∴△COF≌△DOF(SAS),
∴FC=FD.
∴EC=DE,∠ECO=∠EDO=90°,
在Rt△COE和Rt△DOE中,
|
∴Rt△COE≌Rt△DOE(HL),
∴CO=DO;
(2)∵EO平分∠AOB,
∴∠AOE=∠BOE,
在△COF和△DOF中,
|
∴△COF≌△DOF(SAS),
∴FC=FD.
练习册系列答案
相关题目