题目内容
分析:由?ABCD中,BE⊥AD,BF⊥CD,可得∠D=120°,继而求得∠A与∠BCD的度数,然后由勾股定理求得AB,BE,BC的长,继而求得答案.
解答:解:∵BE⊥AD,BF⊥CD,
∴∠BFD=∠BED=∠BFC=∠BEA=90°,
∵∠EBF=60°,
∴∠D=120°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BCD=∠A=60°,
∵在△ABE中,∠ABE=30°,
∴AB=2AE=2×3=6,
∴CD=AB=6,BE=
=3
,
∴CF=CD-DF=6-2=4,
∵在△BFC中,∠CBF=30°,
∴BC=2CF=2×4=8,
∴CE=
=
.
故选B.
∴∠BFD=∠BED=∠BFC=∠BEA=90°,
∵∠EBF=60°,
∴∠D=120°,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BCD=∠A=60°,
∵在△ABE中,∠ABE=30°,
∴AB=2AE=2×3=6,
∴CD=AB=6,BE=
| AB2-AE2 |
| 3 |
∴CF=CD-DF=6-2=4,
∵在△BFC中,∠CBF=30°,
∴BC=2CF=2×4=8,
∴CE=
| BE2+BC2 |
| 91 |
故选B.
点评:此题考查了平行四边形的性质、勾股定理以及含30°角的直角三角形的性质.此题难度适合,注意掌握数形结合思想的应用.
练习册系列答案
相关题目