题目内容
【题目】如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.
(1)在图中作出AB的垂直平分线DE,并连接BD.
(2)证明:△ABC∽△BDC.
【答案】(1)见解析(2)证明见解析
【解析】
(1)分别以A、B为圆心,大于AB的长为半径画弧,两弧交于两点,过两点作直线,即为AB的垂直平分线;
(2)由线段垂直平分线的性质,得DA=DB,则∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出△ABC∽△BDC.
(1)如图,DE即为所求;
(2)∵DE是AB的垂直平分线,
∴BD=AD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=80°﹣40°=40°,
∴∠DBC=∠BAC,
∵∠C=∠C,
∴△ABC∽△BDC.
练习册系列答案
相关题目