题目内容

如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF的延长线上且BP=AC,CQ=AB,
(1)求证:△ABP≌△QCA.
(2)AP和AQ的位置关系如何,请给予证明.
分析:(1)由于∠AEB=90°,∠AFC=90°,可得∠ABE=∠ACQ,进而利用SAS得证△ABP≌△QCA.
(2)由(1)中的全等得∠BAP=∠Q,又有CF⊥AB,通过角之间的转化即可得出结论.
解答:证明:(1)∵BE、CF是△ABC的高,即∠AEB=90°,∠AFC=90°,
∴∠ABP+∠BAE=90°,∠ACQ+∠BAE=90°,∴∠ABE=∠ACQ,
又BP=AC,CQ=AB,
∴△ABP≌△QCA.
(2)PA⊥AQ.
证明:由△ABP≌△QCA得∠BAP=∠Q,
∵∠Q+∠BAQ=90°,∴∠BAP+∠BAQ=90°,即∠PAQ=90°,
∴PA⊥AQ.
点评:本题主要考查了全等三角形的判定及性质,应熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网