题目内容
【题目】已知平行四边形ABCD中,AC,BD交于点O,若AB=6,AC=8,则BD的取值范围是
【答案】4<BD<20
【解析】解:如图,过点C作CE∥BD,交AB的延长线于点E,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴四边形BECD是平行四边形,
∴CE=BD,BE=CD=AB=6,
∴在△ACE中,AE=2AB=12,AC=8,
AE﹣AC<CE<AE+AC,
即12﹣8<BD<12+8,
∴4<BD<20.
所以答案是:4<BD<20.
【考点精析】本题主要考查了三角形三边关系和平行四边形的性质的相关知识点,需要掌握三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
练习册系列答案
相关题目
【题目】某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:
频率分布表 | ||
器材种类 | 频数 | 频率 |
排 球 | 20 | |
乒乓球拍 | 50 | 0.50 |
篮 球 | 25 | 0.25 |
足 球 | ||
合 计 | 1 |
(1)填充频率分布表中的空格.
(2)在图中,将表示“排球”和“足球”的部分补充完整.
(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?