题目内容

【题目】13分)(1)如图1,在四边形ABCD中,AB=AD∠BAD=120°∠B=∠ADC=90°EF分别是BCCD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BEEFFD之间的数量关系为

2)如图2,在四边形ABCD中,AB=AD∠B+∠D=180°EF分别是BCCD上的点,且∠EAF=∠BAD,线段BEEFFD之间存在什么数量关系,为什么?

3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到EF之间的夹角为70°,根据(2)的结论求EF之间的距离.

【答案】1EF=BE+DF;(2)成立;(3583m

【解析】

试题(1)因为△AEF≌△AGF,所以EF=GF,DG=BE,所以EF=BE+FD ;(2)类比(1)的作法,延长FD到点G,使DG=BE.连结AG,可证△ABE≌△ADG△AEF≌△AGF,然后等量代换可得EF="GF=" BE+FD;(3)连结EF,由(2)的结论可得EF=AE+BF=249+334=583.

试题解析:(1EF=BE+FD 3

2)延长FD到点G,使DG=BE.连结AG

∠B+∠ADF=180° ∴∠B=∠ADG 4

AB=AD BE=DG

∴△ABE≌△ADG5

∴AE=AG ∠GAD=∠EAB

∵∠EAF=∠BAD ∴∠EAF=∠GAF 6分 又AF=AF

∴△AEF≌△AGF7

∴EF="GF=" BE+FD 8

3∠AOH=30° ∠BOD=20°

∠CBF=50°

∴∠OBF=120°

∴∠OBF+∠A=180° 10

∠AOB=140° ∴∠EOF=∠AOB 12

AO=BO

根据(2)的结论可得EF=58313

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网