题目内容
【题目】提出问题:
(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,与、、的数量关系为____.
(2)如图(2),已知平分,,,求的度数.
由(1)结论得:
所以 即
因为
所以
所以.
解决问题:
(1)如图(3),直线平分, 平分的外角,猜想与、的数量关系是______;
(2)如图(4),直线平分的外角, 平分的外角,猜想与、的数量关系,并说明理由.
【答案】提出问题:
(1)
(2)
解决问题:
(1)
(2)
【解析】
问题1:根据三角形的外角的性质即可得到结论;
问题2:根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;
解决问题1:根据四边形的内角和等于360°可得(180°-∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°-∠3)+∠D=360°,然后整理即可得解;
解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.
问题1:连接PO并延长.
则∠1=∠A+∠2,∠3=∠C+∠4,
∵∠2+∠4=∠P,∠1+∠3=∠AOC,
∴∠AOC=∠A+∠C+∠P;
故答案为:∠AOC=∠A+∠C+∠P;
问题2:如图2,∵AP、CP分别平分∠BAD、∠BCD,
∴∠1=∠2,∠3=∠4,
∵∠2+∠B=∠3+∠P,
∠1+∠P=∠4+∠D,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(28°+48°)=38°;
解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴(180°-2∠1)+∠B=(180°-2∠4)+∠D,
在四边形APCB中,(180°-∠1)+∠P+∠4+∠B=360°,
在四边形APCD中,∠2+∠P+(180°-∠3)+∠D=360°,
∴2∠P+∠B+∠D=360°,
∴∠P=180°-(∠B+∠D);
解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,
∠2+∠P=(180°-∠3)+∠D,
∴2∠P=180°+∠D+∠B,
∴∠P=90°+(∠B+∠D).
故答案为:∠P=90°+(∠B+∠D).
【题目】甲、乙两名射击选示在10次射击训练中的成绩统计图(部分)如图所示:
根据以上信息,请解答下面的问题;
选手 | A平均数 | 中位数 | 众数 | 方差 |
甲 | a | 8 | 8 | c |
乙 | 7.5 | b | 6和9 | 2.65 |
(1)补全甲选手10次成绩频数分布图.
(2)a= ,b= ,c= .
(3)教练根据两名选手手的10次成绩,决定选甲选手参加射击比赛,教练的理由是什么?(至少从两个不同角度说明理由).