题目内容
(1999•河北)如图,正方形OABC的顶点O在坐标原点,且OA和AB边所在的直线的解析式分别为:y=![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_ST/2.png)
(1)求证:点Q为△COP的外心;
(2)求正方形OABC的边长;
(3)当⊙Q与AB相切时,求点P的坐标.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_ST/images3.png)
【答案】分析:(1)要证点Q为△COP的外心,需证QC=QP=QO,而△COP中,DQ为中位线,则即可得证;
(2)由OA和AB边的解析式求出A点坐标,由两点之间坐标公式求出OA的长,即正方形边长;
(3)当⊙Q与AB相切时,作出⊙Q,由切线和割线的关系,求出P点坐标.
解答:
(1)证明:∵D、E分别为正方形OABC中OC、AB的中点,
∴DE∥OA.
∴Q也是CP的中点.
又∵CP是Rt△COP的斜边,
∴点Q为△COP的外心.
(2)解:由方程组![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/0.png)
解得
,
∴点A的坐标为(
,
).
过点A作AF⊥Ox轴,垂足为点F.
∴OF=
,AF=
.
由勾股定理,得OA=
=
.
∴正方形OABC的边长为
.
(3)解:如图,当△COP的外接圆⊙Q与AB相切时,
∵圆心Q在直线DE上,DE⊥AB,
∴E为⊙Q与AB相切的切点.
又∵AE和APO分别是⊙Q的切线与割线,
∴AE2=AP•AO.
∵OA=
,AE=
OA,
∴AP=
OA=
,
∴当⊙Q与AB相切时,OP=
-
=
,
作PH⊥Ox轴,垂足为H.
∵PH∥AF,∴![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/16.png)
∴OH=
=
,
PH=
=![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/20.png)
∴点P的坐标为(
,
).
点评:本题考查的问题较为复杂,是一次函数和几何知识相结合的问题,同学们要注意几何知识的熟练掌握.
(2)由OA和AB边的解析式求出A点坐标,由两点之间坐标公式求出OA的长,即正方形边长;
(3)当⊙Q与AB相切时,作出⊙Q,由切线和割线的关系,求出P点坐标.
解答:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/images0.png)
∴DE∥OA.
∴Q也是CP的中点.
又∵CP是Rt△COP的斜边,
∴点Q为△COP的外心.
(2)解:由方程组
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/0.png)
解得
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/1.png)
∴点A的坐标为(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/3.png)
过点A作AF⊥Ox轴,垂足为点F.
∴OF=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/5.png)
由勾股定理,得OA=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/7.png)
∴正方形OABC的边长为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/8.png)
(3)解:如图,当△COP的外接圆⊙Q与AB相切时,
∵圆心Q在直线DE上,DE⊥AB,
∴E为⊙Q与AB相切的切点.
又∵AE和APO分别是⊙Q的切线与割线,
∴AE2=AP•AO.
∵OA=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/10.png)
∴AP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/12.png)
∴当⊙Q与AB相切时,OP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/15.png)
作PH⊥Ox轴,垂足为H.
∵PH∥AF,∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/16.png)
∴OH=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/18.png)
PH=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/20.png)
∴点P的坐标为(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021232752409659238/SYS201310212327524096592012_DA/22.png)
点评:本题考查的问题较为复杂,是一次函数和几何知识相结合的问题,同学们要注意几何知识的熟练掌握.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目