题目内容
【题目】已知如图,等腰中,于点,点是延长线上一点,点是线段上一点,下面的结论:①;②是等边三角形;③;④.其中正确的是( )
A.①②③B.①②④C.①③④D.①②③④
【答案】A
【解析】
①连接BO,根据等腰三角形的性质可知AD垂直平分BC,从而得出BO=CO,又OP=OC,得到BO=OP,再根据等腰三角形的性质可得出结果;
②证明∠POC=60°,结合OP=OC,即可证得△OPC是等边三角形;
③在AC上截取AE=PA,连接PE,先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;
④根据∠APO=∠ABO,∠DCO=∠DBO,因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断.
解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°-∠BAD=30°,
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°-(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故②正确;
③如图2,在AC上截取AE=PA,连接PE,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,在△OPA和△CPE中,,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,故③正确;
④由①中可得,∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故④不正确;
故①②③正确.
故选:A.