题目内容
| 4 | 5 |
分析:由sinA=
,CD=12,根据三角函数可得AC=15,根据勾股定理可得AD=9,则BD=4,再根据正切的定义求出tanB的值.
| 4 |
| 5 |
解答:解:∵CD⊥AB,
∴∠CDA=90°…(1分)
∵sinA=
=
∴AC=15.…(2分)
∴AD=9.…(3分)
∴BD=4.…(4分)
∴tanB=
=3…(5分)
∴∠CDA=90°…(1分)
∵sinA=
| CD |
| AC |
| 4 |
| 5 |
∴AC=15.…(2分)
∴AD=9.…(3分)
∴BD=4.…(4分)
∴tanB=
| CD |
| BD |
点评:考查了解直角三角形和锐角三角函数的定义,要熟练掌握好边角之间的关系.
练习册系列答案
相关题目