题目内容

【题目】如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,求GF的长.

【答案】解:∵正方形ABCD,
∴∠A=∠B=90°,∠AEG+∠AGE=90°,
∵∠GEF=90°,
∴∠AEG+∠BEF=90°,
∴∠AGE=∠BEF,
∴△AEG∽△BFE,
∵E为AB边的中点,
∴GA:AE=BE:BF,
∴AE=BE= ,GE= ,EF= ,GF= =3.
另法:取GF的中点H,连接EH,

∵GA∥BF,GF和BA不平行,
∴四边形GABF是梯形,
∴EH= (梯形中位线定理),
∵GA=1,BF=2,
∴EH=
∵∠GEF=90°,
∴△GEF是直角三角形,
∴GF=2EH=2× =3(直角三角形斜边上的中线等于斜边的一半).
【解析】求GF的长,可以先求GE、FE的长,E为AB边的中点,得出AE的长是解决此问题的途径,通过证明△AEG∽△BFE可以得出.
【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网