题目内容

【题目】已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.
(1)求证:CD=CE;
(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.

【答案】
(1)证明:如图,连接CE,

∵AD∥BE,

∴∠A=∠B,

在△ADC和△BCE中

∴△ADC≌△BCE(SAS),

∴CD=CE


(2)解:△BEF为等腰三角形,证明如下:

由(1)可知CD=CE,

∴∠CDE=∠CED,

由(1)可知△ADC≌△BEC,

∴∠ACD=∠BEC,

∴∠CDE+∠ACD=∠CED+∠BEC,

即∠BFE=∠BED,

∴BE=BF,

∴△BEF是等腰三角形.


【解析】(1)连接CE,由平行线的性质,结合条件可证明△ADC≌△BCE,可证明CD=CE;(2)由(1)中的全等可得∠CDE=∠CED,∠ACD=∠BEC,可证明∠BFE=∠BEF,可证明△BEF为等腰三角形.
【考点精析】本题主要考查了平行线的性质的相关知识点,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网