题目内容
【题目】如图,已知为等边三角形,,点为边上一点,过点作.交于点;过点作,交的延长线于点.设,的面积为,则能大致反映与函数关系的图象是( )
A.B.
C.D.
【答案】A
【解析】
根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDC是等边三角形,从而求得ED=DC=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.
∵△ABC是等边三角形,
∴∠ABC=60°,
∵DE∥AB,
∴∠EDC=∠ABC=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDF=30°;
∵∠ACB=60°,∠EDB=60°,
∴△EDB是等边三角形.
∴ED=DB=2﹣x,
∵∠DEF=90°,∠F=30°,
∴EF=ED=(2﹣x).
∴y=EDEF=(2﹣x)(2﹣x),
即y=(x﹣2)2,(x<2)
故选:A
练习册系列答案
相关题目
【题目】广宇、承义两名同学分别进行5次射击训练,训练成绩(单位:环)如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
广宇 | 9 | 8 | 7 | 7 | 9 |
承义 | 6 | 8 | 10 | 8 | 8 |
对他们的训练成绩作如下分析,其中说法正确的是( )
A.广宇训练成绩的平均数大于承义训练成绩平均数
B.广宇训练成绩的中位数与承义训练成绩中位数不同
C.广宇训练成绩的众数与承义训练成绩众数相同
D.广宇训练成绩比承义训练成绩更加稳定