题目内容

【题目】某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分是多少元?
(2)工厂用于购买甲、乙两种材料的金不超38000元,且生B品不少于28件,符合条件的生方案有哪几种?
(3)在(2)的条件下,若生一件A品需加工200元,生一件B品需加工300元,应选择哪种生方案,使生产这50品的成本最低?(成本=材料+加工

【答案】
(1)

设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组

,解方程组即可得到甲材料每千克15元,乙材料每千克25元。


(2)

设生产A产品m件,生产B产品(50-m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m)+25×20(50-m)=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;


(3)

设总生产成本为W元,加工费为:200m+300(50-m),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m)=-200m+55000,根据一次函数的性质得到W 随m的增大而减小,然后把m=22代入计算,即可得到最低成本.


【解析】
①设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组
,解方程组即可得到甲材料每千克15元,乙材料每千克25元;
②设生产A产品m件,生产B产品(50-m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m)+25×20(50-m)=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;
③设总生产成本为W元,加工费为:200m+300(50-m),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m)=-200m+55000,根据一次函数的性质得到W 随m的增大而减小,然后把m=22代入计算,即可得到最低成本.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网