题目内容
【题目】如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.
因为正方形ABCD的面积为1,则正方形EFGH的面积为2,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即点B是EF的中点.
同理,点C,D,A分别是FG,GH,HE的中点.
所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍
探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)
探究三:巳知边长为1的正方形ABCD, 一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)
探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)
【答案】不存在,详见解析
【解析】
探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.
探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC,
∴BF=AE=﹣x,
在Rt△AEB中,由勾股定理,得,
x2+(﹣x)2=12,
整理得x2﹣x+1=0,
b2﹣4ac=3﹣4<0,
此方程无解,
不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;
探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,
所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,
∵Rt△AEB≌Rt△BFC,
∴BF=AE=2﹣x,
在Rt△AEB中,由勾股定理,得,
x2+(2﹣x)2=12,
整理得2x2﹣4x+3=0,
b2﹣4ac=16﹣24<0,
此方程无解,
不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,
故答案为:不存在;
探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC,
∴BF=AE=﹣x,
在Rt△AEB中,由勾股定理,得,
x2+(﹣x)2=12,
整理得2x2﹣2x+n﹣1=0,
b2﹣4ac=8﹣4n<0,
此方程无解,
不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.