题目内容

【题目】如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.

探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.

因为正方形ABCD的面积为1,则正方形EFGH的面积为2,

所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,

∵Rt△AEB≌Rt△BFC

∴BF=AE=﹣x

在Rt△AEB中,由勾股定理,得

x2+(﹣x)2=12

解得,x1=x2=

∴BE=BF,即点B是EF的中点.

同理,点C,D,A分别是FG,GH,HE的中点.

所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍

探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)

探究三:巳知边长为1的正方形ABCD,   一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)

探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)

【答案】不存在,详见解析

【解析】

探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.

探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,

所以EF=FG=GH=HE=,设EB=x,则BF=x

RtAEBRtBFC

BF=AE=x

RtAEB中,由勾股定理,得

x2+(x2=12

整理得x2x+1=0,

b2﹣4ac=3﹣4<0,

此方程无解,

不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;

探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,

所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x

RtAEBRtBFC

BF=AE=2﹣x

RtAEB中,由勾股定理,得

x2+(2﹣x2=12

整理得2x2﹣4x+3=0,

b2﹣4ac=16﹣24<0,

此方程无解,

不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,

故答案为:不存在;

探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n

所以EF=FG=GH=HE=,设EB=x,则BF=x

RtAEBRtBFC

BF=AE=x

RtAEB中,由勾股定理,得

x2+(x2=12

整理得2x2﹣2x+n﹣1=0,

b2﹣4ac=8﹣4n<0,

此方程无解,

不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网