题目内容
【题目】多边形的内角和与某一个外角的度数和为1350度.
(1)求多边形的边数;
(2)此多边形必有一内角为多少度?
【答案】(1)九边形(2)90°
【解析】
根据n边形的内角和定理可知:n边形内角和为(n-2)×180°.设这个外角度数为x度,利用方程即可求出答案.
(1)设这个外角度数为x,根据题意,得
(n-2)×180°+x°=1350°,
解得:x°=1350°-180°n+360°=1710°-180°n,
由于0<x°<180°,即0<1710°-180°n<180°,
解得8.5<n<9.5,
所以n=9.
(2)可得x°=1350°-(9-2)×180°=90°
该多边形必有一内角度数为180°-90°=90°.
练习册系列答案
相关题目