题目内容
【题目】如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.
(1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.
(2)当⊙D与AB边相切时,求BD的长.
(3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?
【答案】(1) y=5-x(0<x≤);(2) ;(3) 或.
【解析】
试题分析:(1)通过相似三角形△BDE∽△BAC的对应边成比例得到,把相关线段的长度代入并整理得到y=5-x(0<x≤);
(2)如图,假设AB与⊙D相切于点F,连接FD.通过相似三角形△BFD∽△BGA的对应边成比例得到.DF=6-BD,由勾股定理求得AG=4,BA=5,所以把相关线段的长度代入便可以求得BD的长度;
(3)分类讨论:⊙D与⊙E相外切和内切两种情况.由(1)的相似三角形推知BD=ED.所以如图2,当⊙D与⊙E相外切时.AE+CD=DE=BD;如图3,当⊙D与⊙E相内切时.CD-AE=DE=BD.
试题解析:(1)如图,∵∠B=∠B,∠BDE=∠A,
∴△BDE∽△BAC,
∴,
∵AB=AC=5,BC=6,BD=x,AE=y,
∴,即y=5-x.
∵0<x≤6,且0≤y≤5,
∴0<x≤.
综上所述,y关于x的函数关系式及其定义域为:y=5-x(0<x≤);
(2)如图,假设AB与⊙D相切于点F,连接FD,则DF=DC,∠BFD=90°.
过点A作AG⊥BC于点G,则∠BGA=90°.
∴在△BFD和△BGA中,∠BFD=∠BGA=90°,∠B=∠B,
∴△BFD∽△BGA,
∴.
又∵AB=AC=5,BC=6,AG⊥BC
∴BG=,AG=,
∴,解得BD=;
(3)∵由(1)知,△BDE∽△BAC,
∴,即,
∴BD=DE.
如图2,当⊙D与⊙E相外切时.
AE+CD=DE=BD,
∵由(1)知,BD=x,AE=y,y关于x的函数关系式是y=5-x,
∴5-x+6-x=x,
解得,x=,符合0<x≤,
∴BD的长度为.
如图3,当⊙D与⊙E相内切时.CD-AE=DE=BD,
∵由(1)知,BD=x,AE=y,y关于x的函数关系式是y=5-x,
∴6-x-5+x=x,
解得,x=,符合0<x≤,
∴BD的长度为.
综上所述,BD的长度是或.