题目内容
【题目】在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点F.
(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;
(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;
(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)根据等边三角形的判定定理得到△ABC为等边三角形,得到AB=BC,∠ABC=∠C=60°,证明△ABD≌△BCE,根据全等三角形的性质证明结论;
(2)过B作BH⊥AD,根据全等三角形的性质得到∠BAD=∠CBE,证明△AHB≌△BFC,根据全等三角形的性质解答;
(3)过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,根据角平分线的性质得到CM=CN,证明△AFB≌△CMA,根据全等三角形的性质得到BF=AM,AF=CM,根据三角形的面积公式列式计算即可.
(1)证明:∵AB=AC,∠BAC=60°,
∴△ABC为等边三角形,
∴AB=BC,∠ABC=∠C=60°,
在△ABD和△BCE中,
,
∴△ABD≌△BCE(SAS),
∴∠1=∠2;
(2)如图2,过B作BH⊥AD,垂足为H,
∵△ABD≌△BCE,
∴∠BAD=∠CBE,
∵∠ABF+∠CBE=60°,
∴∠BFD=∠ABF+∠BAD=60°,
∴∠FBH=30°,
∴BF=2FH,
在△AHB和△BFC中,
∴△AHB≌△BFC(AAS),
∴BF=AH=AF+FH=2FH,
∴AF=FH,
∴BF=2AF;
(3)如图3,过C作CM⊥AD交AD延长线于M,过C作CN⊥BE交BE延长线于N,
∵∠BFD=2∠CFD=90°,
∴∠EFC=∠DFC=45°,
∴CF是∠MFN的角平分线,
∴CM=CN,
∵∠BAC=∠BFD=90°,
∴∠ABF=∠CAD,
在△AFB和△CMA中,
∴△AFB≌△CMA(AAS)
∴BF=AM,AF=CM,
∴AF=CN,
∵∠FMC=90°,∠CFM=45°,
∴△FMC为等腰直角三角形,
∴FM=CM,
∴BF=AM=AF+FM=2CM,
∵
∴S△BDF=2S△CDF,
∵AF=CM,FM=CM,
∴AF=FM,
∴F是AM的中点,
∴ ,
∵AF⊥BF,CN⊥BF,AF=CN,
∴S△AFB=S△BFC,
设S△CDF=x,则S△BDF=2x,
∴S△AFB=S△BFC=3x
∴ ,
则3x+3x+x=2,
解得,x=,即S△CDF=.