题目内容
【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为56和32,则△EDF的面积为()
A.10B.11C.12D.不能确定
【答案】C
【解析】
过点D作DH⊥AC于H,根据角平分线上的性质定理可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.
如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,
∴Rt△DEF≌Rt△DGH(HL),
∴S△EDF=S△GDH,设面积为S,
在Rt△ADF和Rt△ADH中,
Rt△ADF≌Rt△ADH(HL),
∴S△ADF=S△ADH,
即32+S=56S,
解得S=12.
故选C.
练习册系列答案
相关题目
【题目】已知二次函数.
该函数图象的对称轴是________,顶点坐标________;
选取适当的数据填入下表,并描点画出函数图象;
… | … | ||||||
… | … |
求抛物线与坐标轴的交点坐标;
利用图象直接回答当为何值时,函数值大于?