题目内容
【题目】一个三位自然数(百位上的数字为,十位上的数字为,个位上的数字为). 若满足,则称这个三位数为“和悦数”,并规定. 如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3. 所以231是“和悦数”,所以.
(1)请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;
(2)已知有两个十位上的数字相同的“和悦数”,若,求的值.
【答案】(1)例如:253,374都是和悦数,任意一个“和悦数”是11的倍数,理由见详解; (2)99或495
【解析】
(1)根据“和悦数”的定义,用代数式表示和悦数,即可得到结论;
(2)设m=,n=,由,得,从而得或,即==,进而得到答案.
(1)例如:253,374都是和悦数,任意一个“和悦数”是11的倍数,理由如下:
设是和悦数,则,
∴=100a+10b+c=100a+10(a+c)+c=110a+11c=11(10a+c),
∴任意一个“和悦数”是11的倍数;
(2)设m=,n=,
∵,
∴
=
=,
∵ 都是整数,,
∴或,
∵=
=,
∵,
∴=
=,
∴=99或495.
练习册系列答案
相关题目