题目内容
【题目】一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )
A. 10a+b B. 100a+b C. 1000a+b D. a+b
【答案】C
【解析】
a在b的前面构成一个五位数,则a扩大了1000倍,而b不变.
解:由题意得,该五位数可表示为,1000a+b,故选择C.
【题目】已知∠α=36°14′25″,则∠α的余角的度数是 .
【题目】一个数的绝对值是2,则这个数是( )
A. 4 B. 2 C. ﹣2 D. ±2
【题目】某校八年级有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48.这组数据的众数是______分.
【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p==6
∴S===6
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.
【题目】3的相反数为 .
【题目】如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是 .(填写所有正确结论的序号)
【题目】小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是( )
A.互相平分B.相等
C.互相垂直D.平分一组对角
【题目】4的平方根是( )
A. ±4 B. 4 C. ±2 D. 2